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An Index for Cancer Clustering
by Toshiro Tango*

This paper generalizes the index for temporal clustering proposed by Tango in two ways: it allows for
nonuniform population distributions across the study period and it is applicable to the detection of disease
clustering in space where there are variations in population distribution among categories of the con-
founding factor such as age and sex. Applications are illustrated with 1833 cases of mortality from uterine
cancer in the Tokyo metropolitan area during 1978-1982.

Introduction
The investigation of disease clustering in space, in

time, or in both is an important aspect ofepidemiological
studies in order to find clues to the causative mechanism
of the disease in question. For example, the evidence
of space-time clustering suggests that individual cases
of disease are closely related in both space and time, as
is often found in the case with infectious diseases. It
has been stated on several occasions that childhood leu-
kemia occurs in clusters in both space and time in many
of the studies, which indicates the possibility of viral
etiology. Therefore, tests for the detection ofspace-time
clustering have been the subject of considerable re-
search in recent years (1-6).

In the study of chronic disease such as cancer, on the
other hand, those tests for space-time clustering may
not be adequate because cases of chronic disease may
be close in space, but they are unlikely to be close in
time because of long and variable periods between ex-
posure and diagnosis. Thus, tests for space clustering
may be more adequate in this case. However, previous
tests for space clustering (6-8) have been derived under
the unrealistic assumption that the population at risk is
fairly uniforn across the region. Therefore direct use
of those tests would produce spurious evidence of space
clustering.

This paper presents a test statistic for the detection
of disease clustering in space or in time as an extension
of the index C for temporal clustering proposed by
Tango (9) which can adjust differences in population
distribution among categories of the confounding factor
such as age and sex. Recently, Whittemore et al. (10)
proposed a test having the capability of adjusting var-
iations in population distribution among demographic
subgroups at different disease risk. However, their pro-
cedure, based on the statistic that is essentialiy identical
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in form to the index C, is shown to be less adequate
than the method proposed in this paper.

An Index for Time Clustering
Tango (9) proposed an index C for disease clustering

in time
C = rtAr (1)

where nre = (nl,..., nfm), n = nl+ ... +nm, denote
a vector-of observed frequencies in m successive time
intervals, which is assumed to be a random sample from
the uniform multinomial distribution. Hence, asymp-
totically,

V(r - m-11) - N(O, m-2V(ml) ) (2)

where
V(x) = A(x) - lit (3)

and A(x) is the m x m diagonal matrix based on the
vector xc and 1 is the m-dimensional vector of one. The
entries aij of mi x m symmetric matrix A are arbitrary
known measures of closeness between ith and jth in-
terval with property ai = 1 and aij is a monotonically
nonincreasing function of dij, the time distance between
ith and jth interval. This index attains its maximum
value of 1 if and only if ni = n for some i and nj = 0
forj # i. A natural selection for the form ofthe distance
dj may be

dij = li - jil. (4)
Although the choice of the form of aij may be variable
depending on the situation, an exponential formn

a=j= ekp( - dij) (5)
has been considered.
The asymptotic distribution function of the index C

under the hypothesis of no clustering in time has been,
at first, derived using expansion in a series of central
chi-square distribution (9):
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Pr{C < c} = >, ajPr{X2 -1+2 < (c - h)1l} (6)
j=0

where X: denote the chi-square variable with g degrees
of freedom. We shall omit the details on the parameters
aj, h, and P here. However, this formula was not so
easy to use in a simple way for more general cases.

Recently, Tango (11) suggested that a better ap-
proximation for the distribution of C may be obtained
by standardizing C with

T = (C - E(C)) / \/Var(C) (7)

and approximating it with one central chi-square dis-
tribution, i.e., the p-value for the observed value c of
the index C can be approximated by

Pr{C>} = -i1. + TV2i(8PrI> l 1-( 2 2) (8

where

I(x ) f e-tt'lldt (9)

is the incomplete gamma function and
E(C) = M-2{ltA 1 + n-tr[AV(ml) ] },

Var(C) = m-4n-1{4 1tAV(ml)A 1

+ 2n-ltr[(AV(Ml))2]}

(10)

(11)

Table 1. Approximated percentiles T. of the standardized
clustering index T.

Nominal a-level
Skewnessa 0.05 0.01 0.001

0.0 1.65 2.33 3.09
0.1 1.67 2.40 3.23
0.2 1.70 2.47 3.38
0.3 1.73 2.54 3.52
0.4 1.75 2.62 3.67
0.5 1.77 2.69 3.81
0.6 1.80 2.76 3.96
0.7 1.82 2.83 4.11
0.8 1.84 2.89 4.24
0.9 1.86 2.95 4.38
1.0 1.88 3.02 4.53
1.1 1.89 3.09 4.68
1.2 1.91 3.15 4.83
1.3 1.92 3.21 4.96
1.4 1.94 3.27 5.10
1.5 1.95 3.34 5.25

aThe entries of this row coincide with the upper percentiles for
normal distribution N(O.1).

ease incidence or mortality for the ith region, the so-
called O-E ratio can be used:

ni observed number
Ei expected number

One example of this quantity is the well known SMR
(standardized mortality ratio), which is frequently used
in epidemiological studies. Using the above quantity,
an extended index can be introduced:

and v is the degrees of freedom of approximated chi-
square distribution and is given by

v = 8[/1(C)f-2 (12)

where VT, (C) is the skewness of the index C and given
by

( 8{3 1t(AV(ml))2A 1 + n-'tr[(AV(ml))3]}
V'01(C)=

nV{4 ltAV(ml)A 1 + 2 n-'tr[(AV(m1))2W.5
(13)

For convenience in practical applications, the ap-
proximated upper 100a percentiles Ta of standardized
clustering index T are given in Table 1 as a function of
the skewness value vTl (C).

Extension of the Index
In this section we shall extend the index C so that it

is applicable to disease clustering in time or in space
where the overall population at risk is not uniform
across the region or where there are differences in pop-
ulation distributions among categories of confounding
factors such as age.

Let m indicates the number of points in time or in
space called regions. Let ni and Et (i = 1, . . . ,m) denote
the observed number of cases and the expected number
ofcases in the ith region, respectively. Then, as a proper
index which can measure the relative intensity of dis-

m m

G = -2,n aij = qt Aqi=i j=i Ei Ej (14)

where a is the same form defined by Eq. (5) and dij
may be tie Euclidean distance properly scaled between
the ith region and the jth region for the case of space
clustering problem, Ei can be computed by combining
all the regions (i.e., take the standard population to be
the entire population being studied), and

(15)

In fact, when Ei = Ej for all ij, then Ei = n/m and
G = m2C. (16)

Therefore, it can be said that the index C is reasonably
extended to G which can accommodate the variations
in the confounding factor distributions over the region.
Furthermore, under the hypothesis of no clustering, we
have

lim E(G) = ltA 1./nh-*oo (17)

First, let us consider the problem ofdisease clustering
in time or in space where only the differences are the
population size across the region. Let (i denote the pop-
ulation size in the ith region. Then, the vector
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(n1, . . . ,nm) can be assumed to be a random sample of
size n from a nonuniform multinomial distribution with
parameter pt = (P, ... p. m), where pi = ti/'ktk > 0,
for i = 1, . .. ,m. In this case, we have

Ei = n pi,
and, asymptotically,

Vni (q - 1) - N(O, V(pmv) ),
where

Piv= (p -1 P-v Y._l)

(18)

(19)

Second, consider the problem of disease clustering in
space where the population size is, of course, different
over the region with variations in the distributions of
the confounding factor such as age.

Let K denote the number of categories in the con-
founding factor and let ikand nik denote the population
size and the observed number of cases, respectively,
for the ith region and the kth category of the confound-
ing factor. Under the hypothesis that there occurs no
clustering and the disease incidence rate changes across
the categories of the confounding factor, the vector of
the observed frequencies (nlk,. . . ,nmk) for the kth cat-
egory of the confounding factor can be a random sample
of size n+k = nlk + ... + n7mk from a nonuniform mul-
tinomial distribution with parameter pk = (Plk,.*e
Pmnk) where Pik = kik/Zj kjk > 0, for i 1,..., m and
k = 1,... ,K. For this case,

K

E = 2 n+kPik (21)
k=1

and, asymptotically,
Vh(q - 1) - N(O, W), (22)

where W = (wij) is the m x m matrix with element

1 1K
n{ - E %+kPi'k},fori= jIEi Ei k= 1

wij=
K (23)

EtE_ n+kpikPjk, for i kjEjEj k=1
and n = n+1 + ... + n+k. Needless to say, when K =
1, W = V(pi,,). Therefore, the mean, variance and
skewness vaTues for the index G are shown to be similar
in form to Eqs. (10), (11), and (13), respectively, i.e.,

E(G) = lA 1 + nltr[AW], (24)

Var(G) = n-1{4 ltAWA 1 + 2 n-ltr[(AW)2]},

and

8{3 1t(AW)2A 1 + n-1tr[(AW)3]}
(/){41tAWA 1 + 2 n-1tr[(AW)2]}1.5

Consequently, the procedure of approximating the
asymptotic distribution of the index G under the hy-
pothesis of no clustering can be done exactly in the same
way as that for the index C, i.e., we can use the ap-
proximation of Eq. (8) where

= (G - E(G)) -2T VVr()and vu = 8[Vlrp(G)f2. (27)

Needless to say, we can use Table 1 to read the ap-
proximated upper 100a percentiles ofT for the extended
index G.
On the other hand, Whittemore et al. (10) proposed

a test statistic identical in form to the unadjusted index
C even for the above-stated situation and approximated
it with normal distribution. Clearly, the statistic C itself
cannot be a standardized measure. Furthermore, their
test has poorer power compared with the test based on
the index G since they have used the matrix A as a
measure of distance (11), and the normal approximation
to the asymptotic distribution of the index G should be
cautious because it almost always has a substantial
amount of positive skewness, which was examined by
Tango (11) for the detection of time clustering; it will
be investigated for the detection of space clustering in
detail by simulation study in the next section.

Simulation
To investigate the goodness of approximation by chi-

square distribution, we performed the following Monte
Carlo simulation. Situations considered here are that
there are differences in the overall population size
across the region, i.e., K = 1.
Step 0: As an entire population Ql, we shall consider

the set of 400 points in two dimensional space
defined as

Ql = X = (u,v) : u =1,. . ., 209
v =1,..., 20}
where each point X = (u,v) constitute the
centroid of the region.

Then, repeat the following procedure, step 1 to step 3,
100 times.
Step 1: Take random sample with size m = 100 (re-

gions) from the set [Q and assume that sam-
pled points (X1,... ,X100) constitute the
whole region under study. The distance dij
between Xi and Xj is defined as

dij = \F[(ui - uj)2 + (vi - vj)2].
Step 2: Take m random numbers from N(10,22), say

(r1, ... ,rm). Then the value ri is assigned to
(i (i = 1, ... ,m), the population size for the
ith region Xi, and compute

100

Pi = ki>/ ij==1
Step 3: For N = 20(20)100 and K = 1, compute the

skewness value x-P(G) and the difference
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between two kurtosis values, kurtosis value
02(G) and its approximated value ,82(X:) = 3
+ 12/u, where

G) 48 {41i(AW)3A 1 + n- ltr[(AW)4]}
n{41AWA 1 + 2 nltr[(AW)2]}

(28)

The results are given in Table 2 showing that the asymp-
totic distribution of the index have a substantial amount
of positive skewness and that the chi-square approxi-
mation is fairly good.

Table 2. Results of Monte Carlo simulation (100 trials) for
examining goodness of approximation of the distribution of the

index G to a chi-square distribution in the case of space
clustering described in the fourth section (m = 100 and K = 1).

N Mean Median SD Minimum Maximum
20 Skewnessa 0.3989 0.3959 0.0144 0.3707 0.4350

Differenceb 0.0426 0.0412 0.0101 0.0262 0.0857

40 Skewness 1.0636 1.0570 0.0712 0.9125
Difference 0.1203 0.1079 0.0852 0.0188

60 Skewness 1.0094 0.9981 0.0781 0.8375
Difference 0.0860 0.0507 0.0722 - 0.0327

80 Skewness 0.8767 0.8669 0.0686 0.7269
Difference 0.0448 0.0375 0.0544 - 0.0254

1.3881
0.6107

1.3585
0.5101

1.1806
0.3840

100 Skewness 0.7841 0.7754 0.0614 0.6502 1.0559
Difference 0.0358 0.0299 0.0435 - 0.0203 0.3072

a Skewness indicates skewness value vTI(G).
'Difference indicates the difference between two kurtoses, i.e.,

[p 2(G) - (3 + 12/u)], where v is the adjusted degrees of freedom given
in Eq. (27).

Table 4. Results of the application of the clustering index G to
1833 cases of mortality from uterine cancer in 23 Tokyo

metropolitan wards during 1978 to 1982.

Scale parameter X
1 2 3 4

G 28.265 46.907 74.07 103.629
E (G) 26.964 44.217 69.668 97.623
Var (G) 0.655 2.636 7.056 13.451
Skewness 0.318 0.211 0.156 0.126
T 1.607 1.657 1.657 1.638
p-valuea 0.05 0.05 0.05 0.05

ap-value is read from Table 1.

Application
We shall apply our test to examine the level of clus-

tering among n = 1833 cases of mortality from uterine
cancer occurred in Tokyo metropolitan area during 1978
to 1982. Table 3 shows that the female distribution of
population by age, number ofdeaths from uterine cancer
and its SMR, nJ/Ei, and the latitude and longitude of
the geographical centroid in each ofm = 23 wards. The
population numbers for each of K = 7 age groups in
each of 23 wards were obtained from the 1980 Japanese
census. The distance between any two different wards,
dij, was calculated in kilometers using the following ap-
proximate formula applicable to Tokyo metropolitan
area:

[[110.92 x (u-i

+ 90.152 x (vi - vj)2] (in km)
where ui and vi indicate the latitude and longitude of

Table 3. Female distribution of population by age, number of deaths from uterine cancer, and
its standard mortality ratio in each of 23 Tokyo metropolitan wards during 1978 to 1982. Also shown is the latitude and longitude

of the geographical centroid of each of wards.

Age
20-29 30-39 40-49 50-59 60-69
3937 4004 4024 4032 3097
5749 6637 5865 5569 4802
17159 19062 15561 13339 9374
33767 29944 24657 20918 13647
18123 16253 14219 12745 9251
12853 14595 13808 12493 9813
17730 19098 16997 14149 10411
27272 33613 25922 18536 12006
31340 29415 25099 21076 14091
27411 24525 19119 15682 10740
54216 56012 46588 38217 25314
76547 67062 55094 43672 27998
26863 21850 17953 15069 9651
35776 28712 24083 19490 13072
56188 44649 36706 30218 20224
28638 24117 20289 17333 11794
32271 33604 28465 22919 15287
15054 15310 14581 12183 9034
43394 43923 35300 25915 16567
46218 47758 43811 30032 17594
44201 55543 47823 29540 19716
32210 34701 32481 23147 15511
36605 46306 37039 21917 14650

Deaths from
uterine cancer

70-79 80- Number SMR
1916 610
3072 1021
5422 1707
7970 2800
5590 2019
5940 1839
5995 1731
5752 1521
8531 2915
6940 2445
14542 4596
17710 6184
5891 2218
8180 2896
13235 4893
7196 2333
9138 2864
5152 1566
9063 3014
9756 3163
10558 3035
8432 2483
8046 2334

18 107
27 104
49 93
86 108
45 86
63 119
69 122
81 122
63 76
59 91
153 105
161 94
62 106
79 101
113 91
77 113
95 107
61 124
78 80
85 78
128 111

78 88
103 118

Geographical centroid
Latitude Longitude
35.690
35.667
35.654
35.689
35.704
35.708
35.694
35.668
35.606
35.628
35.576
35.642
35.660
35.703
35.696
35.729
35.749
35.732
35.747
35.732
35.743
35.740
35.703

139.755
139.775
139.754
139.707
139.756
139.784
139.798
139.819
139.736
139.695
139.724
139.656
139.701
139.666
139.639
139.718
139.736
139.786
139.712
139.655
139.803
139.850
139.871

Total deaths 11 69 238 366 501 436 212 1833

Ward
Chiyoda
Chuoh
Minato
Shinjuku
Bunkyo
Taitoh
Sumida
Kohtoh
Shinagawa
Megro
Ohta
Setagaya
Shibuya
Nakano
Suginami
Toshima
Kita
Arakawa
Itabashi
Nerima
Adachi
Katsushika
Edogawa
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FIGURE 1. Standardized mortality ratio from uterine cancer in Tokyo's 23 metropolitan wards during 1978-1982.

the geographical centroid of the ith ward, respectively.
Maximum and minimum distance was 21.443 km and
1.555 km, respectively. As to the closeness measure,
we considered

aij = exp( - d0jl/)
where X is a scale parameter. Large A will give a test
sensitive to large clusters and small A will give a test
sensitive small to clusters. When A = 2, for example,
we have

G = 46.907, E(G) = 44.217,
Var(G) = 2.636, \F81(G) = 0.211

and
G - E(G) = 46.907 - 44.217 =\Var(G) - xF-2.636 -165

If we have a good computer program for the incomples
gamma function, we can obtain the approximated p-
value for the observed value of T from Eq. (8). But
here, we shall use Table 1 for simplicity. By referring
to the row of skewness = 0.2 (an approximation of
0.211), we can read

TO.05 = 1.70, To.01 = 2.47, To.0*1 = 3.38.
Therefore, the p-value of T = 1.657 is slightly greater
than 0.05, indicating a weak but approximately signif-
icant evidence of clustering (p = 0.05). Results for sev-
eral values of X, summarized in Table 4, are very similar
one another. Therefore we can make an inference that
some kind of space clustering may have occur for the
mortality from uterine cancer during 1978 to 1982 in
metropolitan Tokyo. Visual inspection of the map of
SMR illustrated in Figure 1 suggests that a clustering
occurs in the east of Tokyo such as Arakawa (SMR =
124), Taitoh (SMR = 119), Sumida (SMR = 122), Koh-
toh (SMR = 122), and Edogawa (SMR = 118). The
result might provide a motivation for further investi-
gation of etiologic clues that may explain the clustering
of uterine cancer in this area.
Computing time for these statistics required about 4

min ofNEC PC 9801 (VX 21) CPU time using a BASIC
computer program that is available from the author
upon request.
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